Tyl Programming Language
▶ BIG NUMBERS
For most applications, integral (whole) numbers are in the range: {-1000 .. 1000}. Some product numeric codes are composed of up to 8 digits code. But what happens when greater numbers are needed to be handled?
Tyl gives you the ability to handle any integral values, and supports all arithmetic calculations with them.
Tyl, actually, abstracts any indication of a number as being a big number, therefore, enabling the programmer to write the same code, as written for regular numbers.

Let's assign the number 1000000000000000000000000000000000001 to a variable:
``` big_int 1000000000000000000000000000000000001 print big_int ```
1000000000000000000000000000000000001
As in numbers page, the big number: 1000000000000000000000000000000000001 is declared and assigned to `big_int` variable.
Likewise, all other operations and instructions in numbers page, are valid here.

Example of big numbers program:
``` num 1 i 20 ~ print '\n' + num ** 9999 ```

9999

99980001

999700029999

9996000599960001

99950009999000049999

999400149980001499940001

9993002099650034997900069999

99920027994400699944002799920001

999100359916012598740083996400089999

9990004498800209974802099880004499900001

99890054983503299538046196700164994500109999

998800659780049492080923920804949780006599880001

9987007797140714871317158284128692850285992200129999

99860090963610007998300265683002799810009636009099860001

998501049545136469975004356564344995300286350454989500149999

9984011994401819563280068561286885608007563218199440011999840001

99830135932023793813237405544307569194467624618776200679986400169999

998201529184305914338560818037531384375481778563143230599184015299820001

9981017090313874837471269619557276312370442303852869162761240968982900189999

99800189886048434499875224925953205847392052596224838758449648448860018999800001
To make the distinction between real numbers and big numbers, consider this:
``` real_num math.power 10 15 big_int 100000 * 100000 * 100000 print real_num print big_int print big_int - real_num ```
1E+15
1000000000000000
0
Big real number is printed with 'E+' notation, while big number is printed in an "as-is" manner. Last subtraction shows that their value is the same.